S520 Homework 8

Enrique Areyan
 March 23, 2012

10.5.\#A-2: Although the data from this experiment is fundamentally discrete, I am going to treat it as continuos. To build a confidence interval with confidence 0.95 , the following needs to hold: $1-\alpha=0.95 \Longrightarrow \alpha / 2=0.025$. The R command $\operatorname{qbinom}(0.025,20, .5)$ returns $k=6$. By experimentation we obtain: $1-\operatorname{pbinom}(6,20, .5) \approx 0.94$. Any other choice will be way off the value and thus, we can construct a confidence interval of 94%, very close to the required 95%.
The form of the interval is (sorting the values): $\left(x_{(k+1)}, x_{(n-k)}\right)=\left(x_{7}, x_{14}\right)=(239,251)$
10.5.\#C-4: $\quad H_{0}: \theta \leq 0$ vs. $H_{1}: \theta>0, \alpha=0.05$
(a) Let $D_{i}=X_{i}-\theta_{0}=X_{i}-0=\vec{d}=c(6.1,-8.4,1,2,0.7,2.9,3.5,5.1,1.8,3.6,7.0,3.0,9.3,7.5,-6.0)$. The following table summirizes the neccesary information of the values D_{i} for the Wilcoxon test:

values	abs(values)	ordered(abs(values))	R_{i}	Positive Ranks	Negative Ranks
6.1	6.1	0.7	1	1	
-8.4	8.4	1	2	2	
1	1	1.8	3	3	
2	2	2	4	4	
0.7	0.7	2.9	5	5	
2.9	2.9	3	6	6	
3.5	3.5	3.5	7	7	
5.1	5.1	3.6	9	8	9
1.8	1.8	5.1	10		
3.6	3.6	6	11	11	
7.0	7.0	6.1	12	12	
3.0	3.0	7	13	13	14
9.3	9.3	7.5	14		
7.5	7.5	8.4	15	15	24
-6.0	6.0	9.3	Sum:	96	

Thus, $t_{+}=96$ and $W 1 . p \cdot \operatorname{sim}(15,96) \approx 0.043 / 2$ (two tails to one tail) $<0.05=\alpha \Longrightarrow$ reject H_{0}
(b) W1.walsh $(x)=3.125$
(c) $W 1 . c i(x, .1)=[1] ,300.855 .000 .905[2] ,311.004 .950 .899[3] ,321.254 .850 .902[4]$, [5,] 341.404 .750 .863 . The estimated confidence coefficient for $k=32$ is nearest to 0.90 , so the desired ci is $(1.25,4.85)$
10.5.\#C-5:
(a) We want to use the sign test for the following hypothesis: $H_{0}: \theta \leq 0$ vs. $H_{1}: \theta>0, \alpha=0.05$. From the data: $n=15, y=\#\left\{x_{i}>0\right\}=13$, and $c=\min (13,15-13)=2$, so

$$
\mathbf{p}=P(Y \geq y)=P(Y \geq 13)=1-P(Y \leq 12)=1-\operatorname{pbinom}(12,15, .5)=0.0034<0.05 \Longrightarrow \operatorname{reject} H_{0}
$$

(b) The sample has an odd number of values, i.e. $n=2 m+1=15 \Longrightarrow m+1=8$, so if we order the values in ascending order, the median is $x_{8}=3.0$.
(c) To build a confidence interval with confidence 0.90 , the following needs to hold: $1-\alpha=0.90 \Longrightarrow$ $\alpha / 2=0.05$. The R command $q \operatorname{binom}(0.05,15, .5)$ returns $k=4$. By experimentation we obtain: $1-\operatorname{pbinom}(4,15, .5) \approx 0.94$. Any other choice will be way off the value and thus, we can construct a confidence interval of 94%, very close to the required 95%.
The form of the interval is (sorting the values): $\left(x_{(k+1)}, x_{(n-k)}\right)=\left(x_{5}, x_{11}\right)=(1.8,5.1)$
10.5.\#D-3: To build a confidence interval with confidence 0.90 , the following needs to hold: $1-\alpha=0.90 \Longrightarrow \alpha / 2=0.05$. The R command $\operatorname{qbinom}(0.05,20, .5)$ returns $k=6$. By experimentation we obtain: $1-\operatorname{pbinom}(6,20, .5) \approx$ 0.94. Any other choice will be way off the value and thus, we can construct a confidence interval of 94%, very close to the required 95%.
The form of the interval is (sorting the values): $\left(x_{(k+1)}, x_{(n-k)}\right)=\left(x_{7}, x_{14}\right)=(0.609,0.670)$

